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Abstract: By taking both control and state vectors as decision variables, the subproblems of model predictive control
scheme can be considered as a class of separable convex optimisation problems with coupling linear constraints. A
Lagrangian dual method is introduced to deal with the optimisation problem, in which, the primal problem is solved by a
parallel coordinate descent method, and a fast dual ascend method is adopted to solve the dual problem iteratively. The
proposed approach is applied to the well-known hierarchical and distributed model predictive control four-tank benchmark.
Experimental results have testified the effectiveness of the proposed approach and shown that the benchmark problem
can be well stabilised.
1 Introduction

Model predictive control (MPC) is a kind of control method, in
which, the current control vector is obtained by solving a finite
horizon open-loop optimal control problem, namely, a constrained
optimisation problem. At each sampling period, using current state
of the plant as initial state, the optimisation problem yields an
optimal control sequence and the first control in this sequence is
applied to the plant [1]. The big advantage of this type of con-
trol is its ability to achieve optimal control performance and to
cope with hard constraints on both control and state vectors. In
recent years, the emergence of large-scale systems, such as power
systems, process control systems, multi-agent systems and trans-
portation systems, has challenged the applicability of traditional
MPC because of the high computational burden and low control
performance [2–6].

There exist three MPC strategies for designing such large-scale
systems, namely, distributed MPC, centralised MPC and decen-
tralised MPC, of which, the distributed MPC is arguably the most
promising one because it beats the decentralised MPC one in
control performance and outperforms the centralised MPC one in
computational burden [5]. From a centralised control point of view,
all subsystems are optimised with respect to an objective function
in a single optimisation problem, making plantwide control difficult
to coordinate and maintain. The key feature of a decentralised con-
trol framework is that there is no communication among different
local controllers. It is well-known that strong interactions among
different subsystems may impede achieving stability and desired
performance when using decentralised control. In distributed MPC,
some level of communication may be established among differ-
ent controllers to achieve better closed-loop control performance.
Distributed MPC can be non-cooperative or cooperative, depend-
ing on whether the same global objective function is optimised in
each local controller. A controller is considered to have a non-
cooperative attitude if it only seeks to minimise its own objective
function. On the other hand, if it aims to minimise not only its
own local cost but the system-wide (or global) cost, it is called a
cooperative controller. A recent review of distributed MPC can be
found in [7, 8] and the references therein.
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Distributed optimisation is a kind of decomposition method for
solving distributed MPC problems, in which, a large optimisation
problem is decomposed into a number of smaller and more tractable
ones. Decomposition methods can be divided into two main cate-
gories: primal and dual decompositions. In primal decomposition,
the optimisation problem is solved using the original formula-
tion and variables, while the constraints are handled with methods
like interior-point, penalty function, feasible direction, coordinate
descent and Newton methods [9–12]. In dual decomposition, the
Lagrangian dual is introduced, and the main idea is to solve the
primal and dual problems alternatively [13–15]. A limitation of
classical gradient-based methods based on Lagrangian duality is
the low convergence rate. Fortunately, in [16, 17], it is shown that
an accelerated gradient algorithm can be constructed using only the
first-order information. Furthermore, when the objective function is
separable (a function is called separable if it is a sum of functions
of its individual variables), it is able to construct parallel methods
for solving the primal problem [18].

The goal of this paper is to solve a benchmark MPC problem
using a fast distributed optimisation approach. The contribution
of the paper is three-fold: (i) the optimisation formulation which
enables parallel implementation is established for the hierarchi-
cal and distributed (HD)-MPC benchmark, and to the best of our
knowledge, this is the first time, since in traditional optimisa-
tion formulation for the benchmark, the objective function is not
separable and thus hinders the parallel implementation; (ii) a fast
distributed optimisation approach is proposed for the subproblems
in the MPC scheme, which combines a fast dual method with a par-
allel coordinate method for primal problem; (iii) the convergence
properties are proven for both the parallel coordinate method and
the fast dual ascend method (FDAM). It should be noted that the
parallel coordinate descent algorithm in [11] cannot be appropri-
ately applied to the benchmark problem since it only deals with
simple box constraints. The accelerated dual gradient-projection
algorithm in [13] has the similar computational complexity to this
study for dual problem, but the parallel mechanism for primal prob-
lem is lost. Although we have adopted the similar parallel algorithm
used in [15], the proposed FDAM is much simpler than that dual
gradient method, which, moreover, is an inexact dual method, and
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cannot reflect the true physical balance relationship between the
state and the control input in state equation.

This paper is organised as follows. In Section 2, we give a brief
description of the HD-MPC benchmark problem. In Section 3, we
show that the subproblems of the MPC scheme can be reformulated
as a class of separable convex optimisation problems with cou-
pling linear constraints. Furthermore, a Lagrangian dual method
is introduced to deal with the constrained optimisation problem,
in which, the primal problem is solved by a parallel coordinate
descent method, and a FDAM is adopted to solve the dual prob-
lem iteratively. Some experimental results are given to show the
effectiveness of the proposed approach in Section 4, followed by
the conclusion in Section 5.

2 Problem description

The HD-MPC four-tank benchmark [19, 20] is widely used to
test, evaluate and compare different approaches in control system
design, because of its interesting properties: (i) there exists strong
coupling between subsystems and the degree of coupling can be
conveniently manipulated; (ii) there exhibit non-linear dynamics in
the plant; (iii) the states can be measured; (iv) the plant is subject
to hard states and inputs constraints; and (v) the plant can be safely
operated.

As illustrated in Fig. 1, the four-tank plant has been divided into
two subsystems which are coupled through the inputs. The tanks
at the top (tanks 3 and 4) discharge into the corresponding tanks
at the bottom (tanks 1 and 2). The three-way valves are emulated
by a proper calculation of the set-points of the flow control loops
according to the considered ratio of the three-way valve. Thus, the
inlet flows of the three-way valves qa and qb can be considered as
the manipulated variables of the real plant.

The system is governed by the following differential equations

dh1

dt
= −a1

S

√
2gh1 + a3

S

√
2gh3 + γa

S
qa

dh2

dt
= −a2

S

√
2gh2 + a4

S

√
2gh4 + γb

S
qb

dh3

dt
= −a3

S

√
2gh3 + 1 − γb

S
qb

dh4

dt
= −a4

S

√
2gh4 + 1 − γa

S
qa

(1)

Fig. 1 Schematic diagram of the four-tank process
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Table 1 Parameters of the benchmark plant

Parameter Value Description

h1max 1.36 m maximum level of tank 1
h2max 1.36 m maximum level of tank 2
h3max 1.30 m maximum level of tank 3
h4max 1.30 m maximum level of tank 4
hmin 0.20 m minimum level of all cases
qamax 3.26 m3/h maximum flow of qa
qbmax 4 m3/h maximum flow of qb
qmin 0 m3/h minimum flow of qa , qb
a1 1.31 × 10−4 m2 discharge constant of tank 1
a2 1.51 × 10−4 m2 discharge constant of tank 2
a3 9.27 × 10−5 m2 discharge constant of tank 3
a4 8.82 × 10−5 m2 discharge constant of tank 4
S 0.06 m2 cross section of all tanks
γa 0.3 ratio of the three-way valve
γb 0.4 ratio of the three-way valve

h0
1 0.65 m linearisation level of rank 1

h0
2 0.66 m linearisation level of rank 2

h0
3 0.65 m linearisation level of rank 3

h0
4 0.66 m linearisation level of rank 4

q0
a 1.63 m3/h linearisation flow of qa

q0
b 2.00 m3/h linearisation flow of qb

where hi, ai, i = 1, . . . , 4, denote the water level and the discharge
constant of tank i, respectively; qj , γj , j ∈ {a, b} represent the flow
and the ratio of the three-way valve of pump j, respectively; S is the
cross section of each tank, and g is the gravitational acceleration
(g = 9.8 m2/s in this study).

By linearising the model at an operating point given by the equi-
librium levels and flows as shown in Table 1, and defining the
deviation variables

xi = hi − h0
i , i = 1, . . . , 4

uj = qj − q0
j , j ∈ {a, b} (2)

then we can obtain the continuous-time linear model as follows{
ẋ = Acx + Bcu
y = Ccx

(3)

where x = (x1, x2, x3, x4), u = (ua, ub), y = (x1, x2) and

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

τ1
0

1

τ3
0

0 − 1

τ2
0

1

τ4

0 0 − 1

τ3
0

0 0 0 − 1

τ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Bc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γa

S
0

0
γb

S

0
1 − γb

S
1 − γa

S
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Cc =
[

1 0 0 0
0 1 0 0

]
(5)

where

τi = S

ai

√
2h0

i

g
, i = 1, . . . , 4

is the time constant of tank i.
Using the ZOH (zero-order hold) method with a sampling period

of 5 s, the discrete-time model is obtained in the following{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(6)
IET Control Theory Appl., 2015, Vol. 9, Iss. 10, pp. 1579–1586
© The Institution of Engineering and Technology 2015



where

A =
⎡
⎢⎣

0.9705 0 0.0207 0
0 0.9663 0 0.0195
0 0 0.9790 0
0 0 0 0.9802

⎤
⎥⎦

B =
⎡
⎢⎣

24.6291 0.5213
−0.1967 32.7684

0 49.4735
−19.8011 0

⎤
⎥⎦ , C =

[
1 0 0 0
0 1 0 0

]

By using an MPC scheme, an online finite horizon open-loop
optimal control problem can be described as follows

min J (k , u) =
N−1∑
i=0

[
1

2
‖x(k + i + 1|k)‖2

Q

+ 1

2
‖u(k + i|k)‖2

R

]
s.t. x(k + i + 1|k) = Ax(k + i|k) + Bu(k + i|k)

x(k|k) = x(k)

x = [hmin, hmin, hmin, hmin]T ≤ x(k + i|k)

≤ [h1max, h2max, h3max, h4max]T = x

u = [qmin, qmin]T ≤ u(k + i|k) ≤ [qamax, qbmax]T

= u, i = 0, 1, . . . , N − 1 (7)

where u = [u(k|k)T, u(k + 1|k)T, . . . , u(k + N − 1|k)T]T are the
decision variables; Q � 0, R � 0 are strictly positive definite sym-
metric weighting matrices; and N is the length of prediction
horizon. At time k , u(k) = u(k|k) is implemented and the opti-
misation problem (7) is repeated at time k + 1. The goal of the
MPC scheme is to achieve stabilisation of the discrete system at
the origin by solving the optimal control problem [1].

Considering that

x(k + i + 1|k) = Ax(k + i|k) + Bu(k + i|k)

x(k|k) = x(k) (8)

we have

⎡
⎢⎣

x(k + 1|k)
x(k + 2|k)

· · ·
x(k + N |k)

⎤
⎥⎦ = S̄

⎡
⎢⎣

u(k|k)
u(k + 1|k)

· · ·
u(k + N − 1|k)

⎤
⎥⎦ + T̄ x(k|k) (9)

where

S̄ =

⎡
⎢⎢⎢⎣

B 0 · · · 0
AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎦ , T̄ =

⎡
⎢⎢⎢⎣

A
A2

...
AN

⎤
⎥⎥⎥⎦ (10)

By eliminating state variables x(k + i + 1|k), i = 0, . . . , N − 1, we
can get the traditional optimisation formulation for MPC problem
as follows

min
u∈U

J (k , u) = 1

2
uTH̄u + ḡTu

s.t. b̄l ≤ S̄u + T̄ x(k|k) ≤ b̄u (11)

here H̄ = S̄TQ̄S̄ + R̄, ḡ = (S̄TQ̄T̄ )x(k|k), R̄ = diag{R, · · · , R},
Q̄ = diag{Q, · · · , Q}, U indicates the constraints imposed on flow
level, b̄l and b̄u indicate the constraints imposed on water level.
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Remark 1: It should be noted that by the traditional elimination
method, the corresponding objective function in the optimisation
problem cannot be separable. A function is separable means that
it can be written as a sum of functions of its individual variables.
Owing to the inseparability, distributed optimisation approaches
cannot be applied to this formulation.

3 Distributed optimisation approach

3.1 Dual decomposition

For simplicity and compactness, we use xk−1 to represent x(k +
i|k) and uk−1 to represent u(k + i|k), the constrained finite horizon
linear quadratic optimisation problem (7) can be rewritten as

min J (x, u) =
N∑

k=1

[
1

2
xT

k Qxk + 1

2
uT

k−1Ruk−1

]

s.t. xk = Axk−1 + Buk−1

u ≤ uk ≤ u

x ≤ xk ≤ x

x0 = x0 = x(k|k) (12)

Let zk = txT
k , uT

k−1]T, then (12) can be expressed as

min
z∈�

f (z) =
N∑

k=1

1

2
zT

k Hzk

s.t. Sz = b (13)

where z = [zT
1 , zT

2 , . . . , zT
N ]T, � = �1 × �2 · · · × �N = {z|[xT,

uT]T ≤ zk ≤ [xT, uT]T}, H =
[

Q 0
0 R

]
, b = [

(Ax0)T 0 · · · 0
]T

and

S =

⎡
⎢⎢⎣

I −B 0 0 · · · 0 0 0 0
−A 0 I −B · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · −A 0 I −B

⎤
⎥⎥⎦

Partitioning the matrix S conformably as

S = [S1, . . . , SN ]

so that Sz = ∑N
k=1 Sk zk , the Lagrangian associated with the

optimisation problem (13) can be expressed as

L(z, λ) =
N∑

k=1

(
1

2
zT

k Hzk + λTSk zk − (1/N )λTb

)
(14)

where λ are the Lagrange dual (or multiplier) variables.
We use a primal-dual scheme to solve the constrained optimi-

sation problem (13). For a fixed λ, the primal (also called inner)
subproblem can be defined by

z(λ) = arg min
z∈�

L(z, λ) (15)

and the dual (also called outer) problem is

max g(λ) (16)

where g(λ) = minz∈� L(z, λ) is the dual function.
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Since the constraints are affine, it is easy to find that strong
duality holds, that is

max g(λ) = g∗ = f ∗

= min
z∈�

{
f (z) =

N∑
k=1

1

2
zT

k Hzk

∣∣∣∣∣ Sz = b

}
(17)

which indicates that the constrained optimisation problem (13) can
be solved based on a primal-dual algorithm framework [18] as
follows

zi+1 = arg min
z∈�

L(z, λi), (18a)

λi+1 = arg max g(λ, zi+1) (18b)

3.2 Parallel algorithm for primal problem

As shown in (14) and (15), when the dual variables λ are fixed,
then the objective function is separable when minimising the
inner problem (15) and thus solving the primal problem can be
done in parallel. Distributed processors can deal with the N opti-
misation subproblems simultaneously, and they share the same
dual variable. The coordinator is to broadcast the dual variables
information to each processor and gather the results obtained by
these distributed processors iteratively. In the following, a linearly
convergent parallel coordinate descent method is introduced.

Let us partition the identity matrix conformably as

I = [ET
k , . . . , ET

N ]T

such that z = ∑N
k=1 Ek zk , and define the partial gradient ∇kL(z, λ)

of ∇L(z, λ) with respect to z as ∇kL(z, λ) = ET
k ∇L(z, λ). It is

obvious to find that the gradient of L(z, λ) is coordinate-wise
Lipschitz continuous

‖∇kL(z + Ek hk , λ) − ∇kL(z, λ)‖ ≤ Lk‖hk‖

where Lk = σmax(H ) is the largest singular value of H , and it is
easy to deduce that

L(z + Ek hk , λ) ≤ L(z, λ) + ∇kLT(z, λ)hk + Lk

2
‖hk‖2

2 (19)

Introduce the following norm

‖z‖2
1 =

N∑
k=1

Lk‖zk‖2
1 (20)

and it is not difficult to check that L(z, λ) is strongly convex with
respect to z under the above norm, that is

L(z1, λ) ≥ L(z2, λ) + ∇LT(z2, λ)(z1 − z2)

+ ρ

2
‖z1 − z2‖2

1 ∀z1, z2 ∈ � (21)

where ρ = {[σmin(H )]/[σmax(H )]} ≤ 1, here, σmin(H ) is the small-
est singular value of H .

Considering that for any given λ, the optimal solution of inner
problem (15) can be computed separably in parallel via the follow-
ing coordinate update, which is a parallel version of the coordinate
descent method in [21] and further developed in [15].
1582
Parallel coordinate descent method (PCDM)
∀ k = 1, . . . , N , compute in parallel:
Step 0. Take z0

k ∈ �k
Step i. (i > 0)
repeat

z̄i
k = arg min

zk ∈�k

{
∇kLT(zi, λ)(zk − zi

k ) + Lk

2
‖zk − zi

k‖2
2

}
(22)

zi+1
k = 1

N
z̄i

k + N − 1

N
zi

k (23)

until ‖zi+1
k − zi

k‖ ≤ ε

Remark 2: The inner problem can be solved in parallel since for a
fixed λ, minimising ( 1

2 zT
k ′ Hzk ′ + λTSk ′ zk ′ − (1/N )λTb) is indepen-

dent of minimising ( 1
2 zT

k ′′ Hzk ′′ + λTSk ′′ zk ′′ − (1/N )λTb), ∀ k ′, k ′′ ∈
{1, 2, . . . , N }, and they can be computed simultaneously.

Introducing the following measure to calculate the distance
between current iterative and the optimal solution

d2
i = ‖zi − z∗‖2

1 =
N∑

k=1

Lk‖zi
k − z∗

k ‖2
2 (24)

where z∗ is the optimal solution of (15) and z∗
k = (Ek )Tz∗, then

we have the following lemma.

Lemma 1: If L(z, λ) is coordinate-wise Lipschitz continuous with
constant Lk , using the algorithm PCDM for iterative update, with
the distance defined in (24), then

d2
i+1 + 2L(zi+1, λ) ≤ d2

i + 2L(zi, λ)

+ 2

N
∇LT(zi, λ)(z∗ − zi) (25)

Proof:

d2
i+1 =

N∑
k=1

Lk

∥∥∥zi+1
k − z∗

k

∥∥∥2

2

=
N∑

k=1

Lk

∥∥∥∥ 1

N
z̄i

k + N − 1

N
zi

k − z∗
k

∥∥∥∥2

2

= d2
i +

N∑
k=1

Lk

[
1

N 2

∥∥z̄i
k − zi

k

∥∥2
2

+ 2

N

(
z̄i

k − zi
k

)T (
zi

k − z∗
k

)]

= d2
i +

N∑
k=1

Lk

[(
1

N 2
− 2

N

) ∥∥z̄i
k − zi

k

∥∥2
2

+ 2

N

(
z̄i

k − zi
k

)T (
z̄i

k − z∗
k

)]

≤ d2
i +

N∑
k=1

Lk

[
− 1

N

∥∥z̄i
k − zi

k

∥∥2
2

+ 2

N

(
z̄i

k − zi
k

)T (
z̄i

k − z∗
k

)]

The optimality condition for (22) implies that

[∇kLT(zi, λ) + Lk (z̄
i
k − zi

k )]T(zk − z̄i
k ) ≥ 0, ∀zk ∈ �k
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Let z∗
k = zk to invoke the above inequality, we have

Lk (z̄
i
k − zi

k )
T(z̄i

k − z∗
k ) ≤ ∇kLT(zi, λ)(z∗

k − z̄i
k )

To continue, we can obtain

d2
i+1 ≤ d2

i +
N∑

k=1

Lk

[
− 1

N
‖z̄i

k − zi
k‖2

2

+ 2

N
∇kLT(zi, λ)(z∗

k − z̄i
k )

]

= d2
i − 2

N

N∑
k=1

[
Lk

2
‖z̄i

k − zi
k‖2

2 + ∇kLT(zi, λ)(z̄i
k − zi

k )

]

+ 2

N

N∑
k=1

∇kLT(zi, λ)(z∗
k − zi

k )

Due to the fact that

zi+1 = zi + 1

N
(z̄i − zi)

= 1

N

N∑
k=1

[zi + Ek (z̄
i
k − zi

k )]

and invoking (19) with z = zi, hk = z̄i
k − zi

k , by the convexity of
L(z, λ) with respect to z, we have

L(zi+1, λ) ≤ 1

N

N∑
k=1

L(zi + Ek (z̄
i
k − zi

k ), λ)

= 1

N

N∑
k=1

[
L(zi, λ) + ∇kLT(zi, λ)(z̄i

k − zi
k )

+ Lk

2
‖z̄i

k − zi
k‖2

2

]

= L(zi, λ) + 1

N

N∑
k=1

[
∇kLT(zi, λ)(z̄i

k − zi
k )

+ Lk

2
‖z̄i

k − zi
k‖2

2

]

Utilising the above inequality, we can get the one of our main
results consequently. �

Theorem 1: Under the conditions of Lemma 1 and the condition
expressed in (21), the algorithm PCDM has the following linear
convergence

L(zi, λ) − L(z∗, λ) ≤
(

1 − β

N

)i

×
[

1

2
d2

0 + L(z0, λ) − L(z∗, λ)

]
(26)

where β = 2ρ
1+ρ

∈ [0, 1].

Proof: Invoking (21) with z1 = zi, z2 = z∗, we have

L(zi, λ) ≥ L(z∗, λ) + ρ

2
d2

i
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namely

L(zi, λ) − L(z∗, λ) + ρ

2
d2

i ≥ ρd2
i

Invoking (21) again with z1 = z∗, z2 = zi, we have

L(z∗, λ) ≥ L(zi, λ) + ∇LT(zi, λ)(z∗ − zi) + ρ

2
d2

i

namely

∇LT(zi, λ)(zi − z∗) ≥ L(zi, λ) − L(z∗, λ) + ρ

2
d2

i ≥ ρd2
i

or

−∇LT(zi, λ)(zi − z∗) ≤ −L(zi, λ) + L(z∗, λ) − ρ

2
d2

i

≤ −ρd2
i

Utilising Lemma 1, we can obtain

1

2
d2

i+1 + L(zi+1, λ) − L(z∗, λ)

≤ 1

2
d2

i + L(zi, λ) − L(z∗, λ)

− 1

N
∇LT(zi, λ)(zi − z∗)

Defining β = [2ρ/(1 + ρ)] ∈ [0, 1], we have

1

2
d2

i+1 + L(zi+1, λ) − L(z∗, λ)

≤ 1

2
d2

i + L(zi, λ) − L(z∗, λ)

− 1

N

{
β[L(zi, λ) − L(z∗, λ) + ρ

2
d2

i ] + (1 − β)ρd2
i

}

=
(

1 − β

N

) [
1

2
d2

i + L(zi, λ) − L(z∗, λ)

]

Applying the above inequality iteratively, we can obtain the result
consequently. �

3.3 Fast gradient method for dual problem

Now, we need to calculate the gradient of the dual function

g(λ) = min
z∈�

{
L(z, λ) = f (z) + λTh(z)

}

where f (z) = ∑N
k=1 zT

k Hzk , h(z) = Sz − b.
Denote z(λ) = arg minz∈� L(z, λ), then we have

∇g(λ) = ∇zT(λ)∇f (z(λ)) + h(z(λ))

+ ∇zT(λ)∇hT(z(λ))λ

= ∇zT(λ)
[
∇f (z(λ)) + ∇hT(z(λ))λ)

]
+ h(z(λ))

= h(z(λ))

owing to the following optimality conditions for z(λ):

∇f (z(λ)) + ∇hT(z(λ)) = 0

In the following, a FDAM is proposed, which resembles the
method in [22], in which, it proposed a fast gradient method which
can be used to accelerate the convergence of any method based on
traditional gradient approach. However, the fast gradient method
in [22] is used to accelerate the convergence of computing pri-
mal problem; while the proposed FDAM in this study is used to
accelerate the convergence of computing dual problem.
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Fast dual ascend method (FDAM)
Step 0. Take some η > 1, λ1, and set λ̄1 = λ1, α1 > 0, t1 =
1
Step i. (i ≥ 1),
repeat

zi = arg min
z∈�

{L(z, λ̄i)} (PCDM) (27)

while(1)

λi+1 = λ̄i + αi(Szi − b) (28)

zi+1 = arg min
z∈�

L(z, λi+1) (PCDM) (29)

if

(λi+1 − λ̄i)TS(zi − zi+1) ≤ 1

2αi
‖λi+1 − λ̄i‖2

2

break
end if

ai = ηai (30)

end while

ti+1 =
1 +

√
1 + 4t2

i

2
(31)

λ̄i+1 = λi+1 + ti − 1

ti+1
(λi+1 − λi) (32)

until ‖λi+1 − λi‖ ≤ ε

Remark 3: In (27) and (29) of FDAM, the PCDM is used to solve
the primal problem. The condition (λi+1 − λ̄i)TS(zi − zi+1) ≤

1
2αi

‖λi+1 − λ̄i‖2
2 is used to make sure that the dual function is

ascending.

Lemma 2: Let sequence {zi, λi} be generated by FDAM, and if

(λi+1 − λ̄i)TS(zi − zi+1) ≤ 1

2αi
‖λi+1 − λ̄i‖2

2 (33)

then for any dual feasible pair (z, λ), we have

L(zi+1, λi+1) − L(z, λ) ≥ 1

2αi
‖λ̄i − λi+1‖2

2

+ 1

αi
(λ − λ̄i)T(λ̄i − λi+1) (34)

Proof: On the one hand

L(zi, λ̄i) − L(z, λ) = f (zi) + (λ̄i)T(Szi − b)

− f (z) − λT(Sz − b)

≥ (zi − z)T∇f (z) + (λ̄i)T(Szi − b)

− λT(Sz − b)

≥ −(zi − z)T(STλ) + (λ̄i)T(Szi − b)

− λT(Sz − b)

= −(λ − λ̄i)T(Szi − b)

= 1

αi
(λ − λ̄i)T(λ̄i − λi+1)
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On the other hand

L(zi+1, λi+1) − L(zi, λ̄i)

= f (zi+1) + (λi+1)T(Szi+1 − b)

− f (zi) − (λ̄i)T(Szi − b)

≥ (zi+1 − zi)T∇f (zi) + (λi+1)T(Szi+1 − b)

− (λ̄i)T(Szi − b)

≥ −(zi+1 − zi)T(STλ̄i) + (λi+1)T(Szi+1 − b)

− (λ̄i)T(Szi − b)

= −(λ̄i − λi+1)T(Szi+1 − b)

= −(λ̄i − λi+1)T[(Szi − b) − S(zi − zi+1)]
= 1

αi
‖λi+1 − λ̄i‖2

2 + (λ̄i − λi+1)TS(zi − zi+1)

≥ 1

2αi
‖λi+1 − λ̄i‖2

2

Combing the above two inequalities, we can get the result conse-
quently. �

Lemma 3: The sequence {zi, λi} generated by FDAM satisfies

2αit
2
i vi − 2αi+1t2

i+1vi+1 ≥ ‖ui+1‖2
2 − ‖ui‖2

2 (35)

where vi = L(z∗, λ∗) − L(zi+1, λi+1), ui = tiλi+1 − (ti − 1)λi − λ∗.

Proof: Invoking Lemma 2 with i = i + 1, and λ = λi+1, we obtain

2αi+1(vi − vi+1) ≥ ‖λ̄i+1 − λi+2‖2
2

+ 2(λi+1 − λ̄i+1)T(λ̄i+1 − λi+2)

Invoking Lemma 2 again with i = i + 1, and λ = λ∗, we obtain

−2αi+1vi+1 ≥ ‖λ̄i+1 − λi+2‖2
2

+ 2(λ∗ − λ̄i+1)T(λ̄i+1 − λi+2)

Multiplying the first inequality by t2
i and then adding it to the

second inequality by (t2
i+1 − t2

i ), and using t2
i+1 − t2

i = ti+1, we
have

2αi+1(t
2
i vi − t2

i+1vi+1) ≥ ‖ti+1(λ̄
i+1 − λi+2)‖2

2

+ 2ti+1(λ̄
i+1 − λi+2)

[(ti+1 − 1)λi+1 − ti+1λ̄
i+1 + λ∗]

Applying the relation

‖a − b‖2
2 + 2(a − b)T(b − c) = ‖a − c‖2

2 − ‖b − c‖2
2

with a = ti+1λ
i+2, b = ti+1λ̄

i+1, c = (ti+1 − 1)λi+1 + λ∗ and by
the fact that {ai} is non-increasing, we have

2αit
2
i vi − 2αi+1t2

i+1vi+1

≥ ‖ti+1λ
i+2 − (ti+1 − 1)λi+1 − λ∗‖2

2

− ‖ti+1λ̄
i+1 − (ti+1 − 1)λi+1 − λ∗‖2

2

Since λ̄i+1 = λi+1 + [(ti − 1)/(ti+1)](λi+1 − λi), we have

ti+1λ̄
i+1 − (ti+1 − 1)λi+1 − λ∗ = tiλ

i+1 − (ti − 1)λi − λ∗

that is to say

2αit
2
i vi − 2αi+1t2

i+1vi+1 ≥ ‖ui+1‖2
2 − ‖ui‖2

2 �
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Lemma 4 [22]: Let {ai, bi} be positive sequences of reals satisfying

ai − ai+1 ≥ bi+1 − bi, ∀ i ≥ 1

then, ai ≤ a1 + b1, ∀ i ≥ 1.

Lemma 5 [22]: The positive sequence {ti} generated by

ti+1 =
1 +

√
1 + 4t2

i

2

with t1 = 1 satisfies ti ≥ (i + 1)/2, ∀ i ≥ 1.

Theorem 2: Let sequence {zi, λi} be generated by FDAM, then for
any i ≥ 1, we have

L(z∗, λ∗) − L(zi+1, λi+1) ≤ 2‖λ1 − λ∗‖2
2

αi(i + 1)2

Proof: Invoking Lemma 4 with ai = 2αit2
i vi, bi = ‖ui‖2

2 along with
Lemma 3, we have

2αit
2
i vi ≤ a1 + b1

= 2α1[L(z∗, λ∗) − L(z2, λ2)] + ‖λ2 − λ∗‖2
2
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Fig. 2 Iterative curves of the −L(z, λ) using DAM, FDAM and IDFG
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(34)≤ 2(λ̄1 − λ∗)T(λ̄1 − λ2)

− ‖λ̄1 − λ2‖2
2 + ‖λ2 − λ∗‖2

2

= ‖λ̄1 − λ∗‖2
2 − ‖λ2 − λ∗‖2

2 + ‖λ2 − λ∗‖2
2

= ‖λ1 − λ∗‖2
2

namely

L(z∗, λ∗) − L(zi+1, λi+1) ≤ ‖λ1 − λ∗‖2
2

2αit2
i

= 2‖λ1 − λ∗‖2
2

αi(i + 1)2

�

Remark 4: From Theorem 2. it can be seen that the convergence
rate for the proposed FDAM is O(1/i2) (i is the iteration counter).
Compared with traditional dual ascend method (DAM) (whose con-
vergence rate is O(1/i)) without accelerated strategy, the proposed
FDAM has better convergence properties. Anyway, we have to
admit that at each iteration, the time consumption in FDAM is a
little more than that in DAM because of the additional computation.
However, this factor plays much less important role in computing
speed than the time consumed in longer iterations.

4 Numerical results

In the experiment, it is assumed that the initial state x(0) =
[0.5, 0.5, 0.5, 0.5] and both Q and R are fixed as identity matri-
ces, then at time k = 1, 2, . . . , the proposed FDAM is used
to solve a sequence of constrained optimisation problems. To
make sure that (33) is always satisfied, we set α constant at
[{σmin(H )}/{2σmax(S)}].

By simple calculation, it can be found that lower and upper
bound for state and control are as follows

u = 1

3600
[−1.63; −2], u = 1

3600
[1.63; 2]

x = [−0.45; −0.46; −0.45; −0.46]
x = [0.71; 0.7; 0.65; 0.64]

For k = 1, we will first show that the proposed FDAM has faster
convergence rate than the corresponding DAM without accelerated
strategy. Fig. 2 illustrates the iterative curves of the −L(z, λ) using
DAM, FDAM and IDFG (inexact dual fast gradient method) in [15]
(the feasibility tolerance εin = 1 × 10−5), respectively, and it is
shown that much fewer number of iterations are needed to obtained
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the global solution when using FDAM, while the performance of
the proposed FDAM is similar to IDFG but with much simper
implementation since the updating of current dual variables needs
to use accumulated historical information in IDFG [15].

The proposed FDAM is applied to solve the subproblems of
MPC scheme sequentially, and only the first control input is used to
generate the next state. Repeatedly, the generated control inputs and
the states are illustrated in Fig. 3, which shows that the benchmark
plant can be well stabilised using the proposed approach.

5 Conclusion

We have studied the HD-MPC four-tank benchmark using an
MPC scheme, in which, a fast distributed optimisation approach
is proposed to solve the constrained optimisation subproblems. By
introducing Lagrangian dual, the primal problem is solved by a
parallel coordinate descent method, and a FDAM is adopted to
solve the dual problem iteratively. The convergence rate of the
proposed FDAM is given and its superiority to classical gradient-
based method is illustrated. The experimental results have shown
that the proposed approach can stabilise the benchmark plant.
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